
TOURNAMENT OF THE TOWNS, 2003–2004

Training Session, 8 November 2003

junior questions: Years 8, 9, 10

1. Find the locus of points M inside the rhombus ABCD such that the sum of the angles
∠AMB and ∠CMD equals 180◦. (5 points)

(Definition A locus is a set of points that

(i) all points in the set satisfy a given condition, and

(ii) all points that satsify the given condition belong to the set.)

2. Two circles c and d are situated in the plane each outside the other. The points C and D
are located on the circles c and d respectively, so as to be as far apart as possible. Two
smaller circles are constructed inside c and d. Of these the first circle touches c and the
two tangents drawn from C to d, while the second circle touches d and the two tangents
drawn from D to c. Prove that the smaller circles are equal. (J. Tabov, Sofia, 4 points)

3. There are 68 coins, each coin having a different weight than that of each other. Show
how to find the heaviest and lightest coins in 100 weighings on a beam balance.

(S. Fomin, Leningrad, 5 points)

4. In a triangle ABC, |AB| = |BC|. K is a point on AB and L is a point on BC such
that |AK| + |LC| = |KL|. A line through the midpoint M of KL and parallel to BC
intersects AC at the point N . Determine ∠KNL.

(Northern Spring, 2003, Junior paper, 5 points)

5. We are given two three-litre bottles, one containing 1 litre of water and the other con-
taining 1 litre of 2% salt solution. One can pour liquids from one bottle to the other and
then mix them to obtain solutions of different concentrations. Can one obtain a 1.5%
solution of salt in the bottle which originally contained water? (S. Fomin, Leningrad, 3
points)

6. There are 36 cards in a deck arranged in the sequence spades, clubs, hearts, diamonds,
spades, clubs, hearts, diamonds, etc. Somebody took part of this deck off the top, turned
it upside down, and cut this part into the remaining part of the deck (i.e. inserted it
between two consecutive cards). Then four cards were taken of the top, then another four
etc. Prove that in any of these sets of four cards, all the cards are of different suits.

(A. Merkov, Moscow, 12 points)
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senior questions: Years 11, 12

1. Prove than an a× b rectangle, where
b

2
< a < b, can be cut into three pieces from which

a square may be put together. (Northern Spring, 2003, Junior paper, 5 points)

2. A 7× 7 square is made up of sixteen 1× 3 tiles and one 1× 1 tile. Prove that the 1× 1
tile lies either at the centre of the square or adjoins one of its boundaries. (10 points)

Solution. Partition the 7 × 7 square into a 7 × 7 array of 1 × 1 squares and label the
smaller squares cyclically as follows

A B C A · · ·
B C A B
C A B C
A B C A
...

. . .

Each 1×3 tile necessarily covers adjoining squares, i.e. squares labelled A,B and C. There
are 17 A squares, 16 Bs and 16 Cs. Thus the 1× 1 tile must occupy a square labelled A.
However, since the orientation of the square is not relevant, for feasible locations of the
1×1 tile we should eliminate all tiles labelled A which do not remain as As when the 7×7
square is rotated through multiples of 90◦ or reflected in an axis of symmetry. This leaves
only those As in the corners, those at the midpoints of each edge and the centre square.
The diagram below shows one configuration where the 1×1 tile is in a corner. Rotations of
the top 4×4 square through 90◦ or 180◦ give configurations where the 1×1 tile occupies the
middle of an edge or the middle of the 7×7 square, respectively. Hence all the placements
of the 1 × 1 tile that were shown to be feasible are indeed possible, and hence we have
shown what we were required to prove.

3. Each of the numbers 1, 2, 3, . . . , 25 is arranged in a 5 by 5 table. In each row they appear
in increasing order (left to right). Find the maximal and minimal possible sum of the
numbers in the third column. (Folklore, 5 points)
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Solution. Denote by aij the number in the ith row and jth column. We are given that
aij < aik, if j < k. W.l.o.g. we may assume that ai3 < a`3, if i < `. Since a53 < a54 < a55,
a53 is at most 23. Since a43 < a44 < a45 and a43 < a53 there are at least five table entries,
namely a44, a45, a53, a54, a55, larger than a43, and so a43 is at most 20. Similarly, at least
eight table entries are larger than a33, and so on. Thus we have that a33 ≤ 17, a23 ≤ 14
and a13 ≤ 11. Hence the sum of the five entries in column 3 of the table is at most

23 + 20 + 17 + 14 + 11 = 85.

By an analogous argument a11 < a12 < a13, etc. and so we have that a13 ≥ 3, a23 ≥
6, a33 ≥ 9, a43 ≥ 12 and a53 ≥ 15, so that the sum of the entries in the table’s 3rd column
is at least

3 + 6 + 9 + 12 + 15 = 45.

Both these sums are attainable as shown below.

1 2 11 12 13
3 4 14 15 16
5 6 17 18 19
7 8 20 21 22
9 10 23 24 25

1 2 3 16 17
4 5 6 18 19
7 8 9 20 21

10 11 12 22 23
13 14 15 24 25

Thus the maximal and minimal possible sums of the numbers in the third column are 85
and 45, respectively. (Based on a proof by A. Liu)

4. In quadrilateral ABCD it is given that |AB| = |BC| = 1, ∠ABC = 100◦, and ∠CDA =
130◦. Find the length of the line segment BD. (4 points)

5. Determine the ratio of the bases (parallel sides) of the trapezoid for which there exists a
line with 6 points of intersection with the diagonals, lateral sides and extended bases cut
5 equal segments. (A. G. Gotman, 5 points)

Solution.
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We construct a trapezoid ABCD with the required properties as follows. Construct a
parallelogram OECF such that |OE| = 5a units and |OF | = 5b units (for simplicity we
have drawn a rectangle, but the argument we give below works equally well if OECF is a
non-rectangular parallelogram). Construct a grid, by drawing 4 lines between and parallel
to OF and EC equally spaced apart, i.e. at intervals of a units, and by drawing 4 lines
between and parallel to OE and FC at intervals of b units. Draw EF ; this will be the line
with 6 points of intersection with the diagonals, lateral sides and extended bases of the
trapezoid ABCD. By similar triangles, the grid cuts EF into 6 equal segments. Assign the
points G, H, I, J , respectively to the internal intersections of EF with the grid as shown
in the diagram. Draw CG to meet OE at B. Draw BI to meet FC at D, and draw DJ
to meet OE at A. All that remains to be done is to determine the ratio |CD|/|AB| and
show that BD intersects EF at I. In order to do so we assign K, L, M, N to grid points
between E and O, and P,Q,R, S to the grid points between F and C, as shown in the
diagram.
Firstly we determine the ratio |CD|/|AB|. Since corresponding angles are equal (be-
ing either vertically opposite or alternate), triangles BKG and CPG are similar, and so
|BK|/|KG| = |CP |/|PG|, i.e.

|BK| = |KG|
|PG|

|CP | = b

4b
· a = 1

4a

Since triangles ALH and CQH are similar, we have

|AL|
|LH|

=
|CQ|
|QH|

|AL| = |LH|
|QH|

|CQ|

=
2b

3b
· 2a = 4

3a

Thus
|NA| = |NL| − |AL| = 2a− 4

3a = 2
3a

Now, since triangles SDJ and NAJ are similar, we have

|SD|
|SJ |

=
|NA|
|NJ |

|SD| = |SJ |
|NJ |

|NA|

=
b

4b
· 2

3a

= 1
6a

Thus we have

|AB| = |AL|+ |LK| − |BK|
= 4

3a + a− 1
4a

= 25
12a

|CD| = |CS|+ |SD|
= 4a + 1

6a

= 25
6 a
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Thus |CD|/|AB| = 2.
Finally, suppose the line BD intersects MR at some point I ′. We will show that in fact
I ′ = I, by showing that I ′ cuts the line segment MR in the ratio 3 : 2. Since triangles
BMI ′ and FRI ′ are similar we have

|MI ′|
|RI ′|

=
|MB|
|RF |

=
|MK| − |BK|

|RF |

=
2a− 1

4a

2a
= 3

2

Thus I ′ cuts MR in the ratio 3 : 2, and hence I ′ = I.
Hence ABCD is a trapezoid with the required properties and the ratio |CD|/|AB| of the
long base of the trapezoid to its short base is 2.

6. Prove that for all positive a1, a2, . . . , an the inequality(
1 +

a2
1

a2

)(
1 +

a2
2

a3

)
· · ·
(

1 +
a2

n

a1

)
≥ (1 + a1)(1 + a2) · · · (1 + an)

holds. (L. D. Kurliandchik, 5 points)

Solution. Define the proposition

P (n) :
(

1 +
a2

1

a2

)(
1 +

a2
2

a3

)
· · ·
(

1 +
a2

n

a1

)
≥ (1 + a1)(1 + a2) · · · (1 + an)

We prove P (n) for all natural numbers n by induction. Firstly, P (1) is true, since

LHS of P (1) =
(

1 +
a2

1

a1

)
= (1 + a1) = RHS of P (1)

Now we show P (k) =⇒ P (k + 1), for any natural number k. In following through the
inductive argument in the natural way we find that we would like(

1 +
a2

k

ak+1

)(
1 +

a2
k+1

a1

)
≥
(

1 +
a2

k

a1

)
(1 + ak+1)

which is equivalent to
(ak+1 − a1)(a2

k+1 − a2
k) ≥ 0

Observe that P (k + 1) is invariant under the rotational permutation 1 → 2 → 3 → · · · →
k + 1 → 1. So we may assume that ak+1 is the largest of the ai, and in particular that
ak+1 ≥ a1 and ak+1 ≥ ak, from which we may deduce that

(ak+1 − a1)(a2
k+1 − a2

k) ≥ 0

and hence that (
1 +

a2
k

ak+1

)(
1 +

a2
k+1

a1

)
≥
(

1 +
a2

k

a1

)
(1 + ak+1). (1)
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Now the argument is straightforward. By the inductive hypothesis we have P (k), i.e.(
1 +

a2
1

a2

)(
1 +

a2
2

a3

)
· · ·
(

1 +
a2

k

a1

)
≥ (1 + a1)(1 + a2) · · · (1 + ak). (2)

Thus

LHS of P (k + 1) =
(

1 +
a2

1

a2

)(
1 +

a2
2

a3

)
· · ·
(

1 +
a2

k

ak+1

)(
1 +

a2
k+1

a1

)

≥
(

1 +
a2

1

a2

)(
1 +

a2
2

a3

)
· · ·
(

1 +
a2

k

a1

)
(1 + ak+1) by (1)

≥ (1 + a1)(1 + a2) · · · (1 + ak)(1 + ak+1) by (2)
= RHS of P (k + 1)

Thus we have shown P (k + 1) follows from P (k).
So, by induction, P (n) is true for all natural numbers n as was required to be shown.
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