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In August, there were three Australian Mathematics Trust-sponsored competitions in 
quick succession, the Australian Mathematics Competition (AMC), and two of olympiad level: 
the Australian Intermediate Mathematics Olympiad (AIMO) and the Senior Mathematics 
Contest (SMC). Two WA students won medals in the AMC: Seamus Carey (Year 9, Perth 
Modern) in the Intermediate competition, and  Arash Arabshahi (Year 12, Cyril Jackson) in the 
Senior competition (see: http://www.amt.edu.au/amc2011.html ). The significant scores for 
the AIMO and SMC are available at http://www.amt.edu.au/amoc2011.html , and those 
from WA are listed below. Most of these students also won a prize in the AMC, but these are 
not shown at the website given above. 

 

  Senior Student  Year School   SMC Result 
  
  Alexander Chua  10 Christ Church GS 35  Prize 
  Andrew Yang   11 Rossmoyne SHS 25  Distinction  
  Kathleen Dyer  11 St Hilda's ASG 19  Distinction 
  Edward Yoo   10 All Saints' College 19  Distinction 
 
  Junior Student  Year School   AIMO Result 
 
  Alexander Chua  10 Christ Church GS 35  Prize 
  Edward Yoo   10 All Saints' College 31  High Distinction 
  Katerina Chua  10 St Hilda's ASG 29  High Distinction 
  Daryl Chung   10 Perth Modern School 24  High Distinction 
 

 The SMC has five problems. This year the problems ranged over the topic areas: 
Number Theory, Functional equations, Geometry, Polynomials, and Combinatorics. This year, 
nine WA students were invited. Particularly notable were: Alexander Chua (Year 10), with a 
perfect score, and Andrew Yang (Year 11), who solved 3 problems and made some progress 
on the remaining 2 problems, and Edward Yoo (Year 10) and Kathleen Dyer (Year 11), who 
each solved 2 problems and made substantial progress on a third. The WA students seemed 
to find the problems almost exactly in order of difficulty; all but one completely solved the first 
problem. The paper was just about perfect in the way it discriminated the students. 
 The AIMO has ten questions, the first eight of which require only answers (and each 
answer is an integer lying in the range 1 to 999), though wrong answers with some correct 
reasoning may also be awarded part marks.The last two questions require full reasoning.  The 
paper was a little harder than last year. There were four WA students who got 24 or better, 
including Alexander Chua with another perfect score, and his sister Katerina with 29. The 
others were Edward Yoo with 31 and Daryl Chung with 24. Alexander, Edward and Daryl were 
also invited to sit the Senior Contest.  
 The problems I have selected to include in the column this time, are the easiest one 
from the SMC, Question 1, which was on Number Theory, and the most difficult from the 
AIMO, which happened to be Question 6. 
 
Question 1  (SMC): 
Determine all pairs of integers ),( yx that satisfy 2222 11)11( ++=++ yxyx . 
 
Solution. We start by expanding the given equation. 

http://www.amt.edu.au/amc2009.html
https://email.curtin.edu.au/exchweb/bin/redir.asp?URL=http://www.amt.edu.au/amoc2009.html
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The last equation expresses 211 as the product of two factors, which since 11 is prime is only 
possible in two ways over the positive integers: 111111111 22 ×=×= , and, a further two ways, 
replacing each factor by its negative over all integers. Now the last equation, above is 
symmetric in x and y . So we may assume that the factors are in order, and if we find a 
solution ),( yx with yx ≠ , deduce that ),( xy is also a solution. So we have the following: 
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leading us the solutions: )22,22(),132,12(),0,0(),110,10( −−−−− and by symmetry, the further 
solutions: ).12,132(),10,110( −−−  Hence, in all there are six solutions.  
 
Question 6 (AIMO): 
There are a number of towns on a circular road, served by 5 buses. Each bus travels the 
entire road but stops at only 5 towns. For each pair of towns there is a bus stopping at both 
towns. Find the largest possible number of towns on the road. 

 
Solution. The solution is in two stages: 

1. Construct an example to show 9 towns is possible, so that the maximum number of 
towns is shown to be 9≥ .  

2. Show that 10≥ towns is impossible, so that the maximum number of towns is shown to 
be 9≤ . 

For Stage 1., represent the towns by IBA ,,,  . Then let the stops for Buses 5,,1 be as 
follows: 
 Bus 1: A B C D E 
 Bus 2: A              F G H I 
 Bus 3:    B           F G H I 
 Bus 4:      C D E F G  
 Bus 5:      C D E        H I 
Observe that Buses 1 and 2, pair A with each of the other towns, Buses 1 and 3 “do it” for B, 
Buses 1, 4 and 5 pair each of C, D, E with each other and A and B, F and G, and H and I, 
respectively. Then Buses 2, 3 and 4 pair F, G with each other and H, I and A, B, and C, D and 
E, respectively. Finally, Buses 2, 3 and 5 pair H, I with each other and F, G and A, B, and C, D 
and E, respectively. Thus, 9 towns is possible, and so the maximum number of towns is at 
least 9. 
 
For Stage 2., we suppose for a contradiction there are 10 or more towns. Then any town forms 
a pair with at least 1429 +×=  other towns. Any one bus, stopping at only 5 towns, can 
connect a particular town with (at most) 4 other towns. So to connect a given town with 9 other 
towns, the given town must be served by at least 3 buses (essentially, by the Pigeon Hole 



Principle). Thus, since each of at least 10 towns is served by at least 3 buses, there are at 
least 30103 =× stops. But for 5 buses each stopping at 5 towns, we have only 25 stops. So, 
we have our contradiction, and hence there cannot be 10 or more towns. 
 
So the maximum number of towns is at least 9 by Stage 1, and at most 9 by Stage 2, i.e. the 
maximum number of towns is 9.  
 
Remark. The above solution leaves begging, what made us think of 9 in the first place? Well, 
that’s what makes this question so hard! The solution above is what results after some spit and 
polish. It’s the “elegant” end result, with all superfluous – though, not necessarily non-
instructive – steps removed. When developing the above solution, on our scratch-pad we will 
have investigated some lower numbers of towns: certainly the number of towns is at least 5, 
and we will have become convinced quickly that 6 and 7 towns are possible; 8 takes a little 
longer. Once we have found a configuration that shows 9 is possible, and start to investigate 
10, at some point we have to become convinced that 10’s not going to work, so that then we 
start looking for an argument to prove 10 doesn’t work. So this question, really does require 
some persistence to crack! Well done, if you managed it! 


