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This article is a “reaction” to the Jane Watson article of a similar name in the last Cross Section 
issue. 
 
Introduction 
 
Firstly, a general comment with regard to mnemonics. Our brains find it a little difficult, at least in 
the short term, to remember more than 6 or 7 items. Mnemonics can help by bundling several 
items into one, which, of course is much easier to remember. However, many, if not most, 
mnemonics also require some sort of “support” information, without which the mnemonic is of little 
benefit, and so it is with the BODMAS mnemonic and its variants, but more on that later. 
 
Purpose of the BODMAS mnemonic 
 
Why have rules for order of operations at all, if we can just add brackets to show the order we 
intend? Essentially we have these rules to avoid clutter. An expression only needs to be mildly 
complicated before nesting of brackets, and therefore matching of brackets becomes a bit of an 
issue, (and note that square brackets and braces are not used for this sort of grouping by 
calculators and computers). 
 
The variants and what they mean 
 
My first issue with the Jane Watson article is in what the O of BODMAS stands for. Rather than 
“Of” (as, implied Multiplication), which apparently it was originally, these days, the improved 
interpretation is “Orders” as a synonym for “Indices”. So BODMAS abbreviates: 
 
 Brackets, Orders, Division, Multiplication, Addition, Subtraction 
 
but then some use BOMDAS which has Division and Multiplication in the opposite order. Then 
there is BIMDAS which is the same as BOMDAS with the word  “Indices” instead of “Orders“ (this 
is my preferred version). Then the Americans have the phrase: 
 
 Please Excuse My Dear Aunt Sally 
 
which very cutely suggests 
 
 Parentheses, Exponents, Multiplication, Division, Addition, Subtraction 
 
where “Parentheses” is the more correct term for round brackets and “Exponents” is yet another 
synonym for “Indices”. 
 
But hang on, how can it be that some people use an acronym with Multiplication and Division in 
one order, and others use one in the opposite order. They can't both be right, can they? Well, this 
brings me to my introductory comment, that a mnemonic without its “support” information is of little 
benefit: 
 
 Multiplication and Division have the same precedence! 
 
and despite the fact that all the acronyms end in AS (and not sometimes SA - around the other 
way, doesn't exactly roll off the tongue), 
 
 Addition and Subtraction also have the same precedence! 
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So BIMDAS (my preferred version, as I said before) should really be recalled as saying: 
 
 Brackets, Indices, Multiplication and Division, Addition and Subtraction 
 
where each comma is read as a “then”, and 
 
  when the above doesn't tell you what to do first evaluate from left to right. 
 
As I said before, without the “support” information the mnemonic is pretty much useless. 
 
I'm delighted to say that when I googled for: YouTube BODMAS that I got the link: 
 
 http://www.youtube.com/watch?v=Z-FKjqL6NyQ 
 
and the people involved do a wonderful job of singing (tunefully) the explanation above correctly, 
and all in 1 minute and 27 seconds. 
 
Multiplication and Division, same precedence? ... Explain! 
 
Now we seem to have opened a can of worms. How can it be that Multiplication and Division have 
the same precedence? Well ... if one understands Division as a sort of Multiplication in disguise, it 
starts to make sense. Whenever we divide by x , equivalently we can multiply by its reciprocal x1 . 

Thus dividing by 2 is the same as multiplying by 2
1 . 

 
Similarly, subtracting x  is equivalent to adding its negative x− . So subtracting 2 is the same as 
adding 2− . 
 
So instead of having the four operations: −+÷× ,,,  we could say we just have the two: .,+×  
 
Thinking this way has some side benefits, since both these operations have the properties of being 
commutative and being associative. These operations being commutative means that: 
 
  abba ×=×  
     and abba +=+  
           
and their being associative means that: 
 
  )()( cbacba ××=××  
     and )()( cbacba ++=++  
 
so that even without having a BIMDAS (or variant) rule, brackets are not needed for telling us how 
to evaluate 
 
  cba ××  
     and cba ++  
 
Calculators 
 
The Jane Watson article claimed that different calculators would apply different rules of 
precedence. This was quite possibly true at the time the article was written, but today you would be 
hard-pressed finding even a $20 calculator that doesn't have the BIMDAS rules built in, which is a 
bit of a shame, really; I'd rather the little kiddie-winkles were forced to think about how they entered 
expressions into their calculators, rather than leave things to blind chance, as some seem to! At 
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this point I think I'd like to relate a history of calculators from a personal experience point of view. 
 
Quite a few years ago, I was working full-time as an Engineering Assistant (I was at uni. part-time) 
and Barry, a somewhat older Technical Officer, came up to me with a calculator that was 
apparently giving him the wrong answer. I suppose I was perceived as the young bright spark who 
would be able to explain it, and as it happened I could. Anyway, Barry keyed in: 
 
 3 + 4 ×  5 = 
 
and the calculator showed 35. Barry, knowing his order of operations, “knew” this should have 
been 23. Anyway, I explained that the calculator didn't know order of operations rules, and so to 
enforce the rules he would need to insert the brackets manually; even the early calculators had 
those! So he needed to enter: 
 
 3 + ( 4 ×  5 ) = 
 
or, alternatively, he could rearrange the expression first using the commutativity of addition and 
enter: 
 
 4 ×  5 + 3 = 
 
I further explained what he was seeing in the calculator's display as he was pressing the keys. The 
early calculators did have a memory key which when used put what was currently in display into a 
memory where it could be recalled later using the RM (Recall Memory) key and usually also had a 
capability for up to 6 levels of brackets - but maybe that was a fairly high-end model. Otherwise, 
they only used the display and an unseen register - a stack - for calculations. The keys Barry 
pressed caused the following 
 
    3 ... 3 appears in the display 
    + ... as a side-effect signals the number in the display is complete 
          (no more digits for it are coming) 
    4 ... 3 gets moved to the stack and 4 appears in the display 
    × ... as a side-effect signals the number in the display is complete 
          so that the calculation of 3 + 4 can proceed, and does, so that 
          7 appears in the display 
    5 ... 7 is moved to the stack and 5 appears in the display 
    = ... signals the number in the display is complete and 
          evaluation of the stack number times the display number, 
          i.e. 7 ×  5, can proceed, and 35 appears in the display. 
 
Only a few years later, Texas Instruments and Hewlett Packard were the leaders in producing 
calculators, and anyone doing Engineering had one or the other. The TI calculators touted AOS - 
Algebraic Order of Simplification, i.e. it had BIMDAS built in. HP, on the other hand, had Reverse 
Polish, explaining that with this, one didn't need any brackets. You will find any HP calculator you 
get today, still has a mode for Reverse Polish, but also applies BIMDAS outside this mode. 
 
At the time Jane wrote her article, I imagine only $5 wafer thin solar-powered (and hence 
batteryless) calculators might not have had BIMDAS built in. 
 
So what's Reverse Polish? Well ... most of the operations we use are binary, that is to say they 
operate on two operands, and, in fact there are three ways we could define binary operations: 
prefix, infix, or postfix. 
For prefix, the operation comes first, then the operands, e.g. ),( ba+ , the "+" of a  and b . 
For infix, the way we usually use, the operation is "in between", e.g. ba + . 
For postfix, the operation comes at the end, e.g. +),( ba , a  and b are plussed. 
Essentially, Reverse Polish is postfix. “But hang on”, you say, “that has brackets all over the place”. 



What I haven't told you yet, is that you don't actually enter the brackets, but you may have to use 
the Enter key as a separator, i.e. as the comma, between the arguments. So, 4 ×  5 + 3 (infix) 
would be entered: 
 
 4 Enter 5 ×  3 +   ... which in postfix is: ((4,5) × ,3)+ 
 
with no need for an "=" key. I think HP had a good idea, because it made the user think about what 
they were entering. I fear that the modern calculator, allows students to think they don't need to 
know the order of operations, because the calculator will do it all for them. 
 
A common error 
 
In the past, we used whitespace for grouping a lot. The trouble with this, is that electronic 
technology largely ignores whitespace. So when we write 
 

 
cb

a
×

 

 
and then gradually make the vinculum (the line between numerator and denominator) more and 
more oblique we may arrive at 
 
 cba ×/  
 
and still expect that cb×  is in the denominator, but it isn't! (Of course, students make a similar 
error when ×  is replaced by +.) 
 
Now, according to BIMDAS, we evaluate from left to right, because / and ×  have the same 
precedence. So, in fact, cba ×/ is the same as 
 

 .
b

ca×
 

 
Here's a detailed analysis, which you may like to review after reading the next couple of 
paragraphs. 
 
 cbacba ××=× )/1(/ ..... dividing by b is the same as multiplying by b/1  
   )/1( bca ××= ..... multiplication is associative and commutative 
   )/1()( bca ××= .. multiplication is associative 
   bca /)( ×= ......... dividing by b is the same as multiplying by b/1  
 
Factors and Terms 
 
In an expression of form 
 

cba ××  
 

cba ,, are called factors. Recall we said before that Division is just Multiplication in disguise. So, 
therefore an expression of form 
 
 cba /×  
can also be said to have factors and they are cba /1,, , since the expression written with only 
multiplications would be 
 
 )./1( cba ××  



Also, in an expression of form 
 

cba ++  
 

cba ,, are called terms. Again, recall that we said before that Subtraction is just Addition in 
disguise. So, therefore an expression of form 
 
 cba +−  
 
can also be said to have terms, and they are ,,, cba − since the expression written with only 
additions would be 
 
 cba +−+ )(  
 
So, after we have dealt with the Brackets and Indices we are left with a sum of terms, where each 
term is a product of factors. 
 
An exercise 
 
Enter the following expression as you would need to into a calculator, and try to do so, with as few 
brackets as possible: 
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This is a problem I give university students as an introductory exercise for our on-line quiz system, 
and most students find it hard. 
 
The line between a numerator and a denominator is called a vinculum. Essentially, what we are 
doing is replacing horizontal vinculums which imply a certain grouping with oblique ones (/) which 
don't. 
 
The key idea is that it follows from the BIMDAS rules, that if a numerator or denominator consists 
of more than one term it needs to be bracketed, or otherwise they are superfluous (when we use / 
rather than a horizontal vinculum). 
 
So we see 
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and 
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This reduces the problem to the sum of two fractions where the left fraction consists of a numerator 
and a denominator, each consisting of two terms, and therefore needing bracketing: 
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Computer programming languages 
 
Computer programming languages have to deal with a vast number more operations than what is 
encountered in an algebraic expression. In particular, there is the mod (or remainder) operation, 
logical and and or, but, in my experience they all agree with respect to the operations mentioned 
above. With respect to the extra operations, there are differences, and so, in these cases, one 
should err on the side of safety and use brackets when in doubt, or for portability of your computer 
program. 
 
Is this the end of the story? 
 
The short answer is “No”. Where do functions fit in?  (e.g. 2)sin(x - Maple treats it as: 2))sin(( x , 
which is sensible, since the other interpretation - which I have also seen - can be written: )sin( 2x .) 
And, there is a special rule for multiple levels of indices, not covered by BIMDAS. For 
 

Cba … evaluation does not proceed from left to right! 
 
Why not? Essentially, 
 
 bccb aa =)(  
by the Index Laws, and the righthand expression is surely the way we would prefer to write cba )( . 
 
On the other hand, 
 

Cba  
 
doesn't have a nice other way to write it, except for leaving the brackets out, if indeed that is the 
convention adopted (and it is). 
 
Wikipedia identifies two calculators that differ in regard to evaluation of 

Cba . So, to be safe, in this 
case, one should insert brackets when entering into a calculator. 
 
Other reading 
 
Wikipedia is a wonderful resource, and, particularly for mathematics, can generally be relied upon 
for accuracy. When I visit wikipedia, as I do often, I get a surge of feeling that altruism is alive and 
well. Check out: http://en.wikipedia.org/wiki/Order_of_operations 
It covers everything I have mentioned and more. 
 
Conclusion 
 
I'm hoping after you've read this, you agree that BIMDAS (or BODMAS or whatever) is a good 
start, which with associative links to quite a lot of “support” information, helps you get closer to the 
full story. And the “word” to think about in association with calculators is GIGO (Garbage In 
Garbage Out); always have some sort of check, so that you have some confidence of the 
correctness of the output, e.g. rounding off your numbers and doing a quick mental check is good 
for checking your answer is about the right size. 
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