
TOURNAMENT OF THE TOWNS, 2003–2004

Training Session, 22 November 2003

junior questions: Years 8, 9, 10

1. Find all integer solutions to the equation

yk = x2 + x

where k is a natural number greater than 1. (3 points)

Solution. First write
yk = x(x + 1)

Since gcd(x, x + 1) = 1, we must have x = ak, x + 1 = bk and y = ab, for some integers
a, b. Since k > 1, the only pairs of consecutive integers that can be written as kth powers
are −1 and 0 or 0 and 1. Thus we have x = −1 or 0, and in either case y = 0 and k > 1
is arbitrary.

2. Find all real solutions to the system of equations

(x + y)3 = z, (y + z)3 = x, (z + x)3 = y.

(Based on an idea by A. Aho, J. Hopcroft, J. Ullman, 5 points)

Solution. First we observe that the entire problem is symmetric in x, y, z. Thus w.l.o.g.
we may assume x ≥ y and noting that f(u) = u3 is an increasing function (so that u > v
implies u3 > v3) we have that

x + z ≥ y + z

(x + z)3 ≥ (y + z)3

y ≥ x

Since we now have x ≥ y and y ≥ x, in fact x = y. By symmetry, we must also have y = z.
Thus all solutions must be of form x = y = z. Substituting x for y and z in any of the
given equations, we obtain

(2x)3 = x

8x3 − x = 0

x(8x2 − 1) = 0

x(2
√

2x− 1)(2
√

2x + 1) = 0

and so x = 0, 1/(2
√

2) or −1/(2
√

2), and thus the solutions (x, y, z) of the given problem
are the triples

(0, 0, 0), (
1

2
√

2
,

1
2
√

2
,

1
2
√

2
), (− 1

2
√

2
,− 1

2
√

2
,− 1

2
√

2
)

3. Find all solutions of
2n + 7 = x2

in which n and x are both integers. Prove that there are no other solutions. (4 points)
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Solution. For n < 0, 2n (and hence 2n + 7) is not an integer.
For n = 1, 2n + 7 = 9 = (±3)2. Thus we have solutions, n = 1, and x = 3 or −3.
For n > 2, we consider the problem modulo 4. Observe that x is congruent to one of 0, 1, 2
or 3 (mod 4), and hence x2 is congruent to one of 0 or 1 (mod 4). However,

2n + 7 ≡ 0 + 7 (mod 4)
≡ 3 (mod 4)

i.e. we require x2 ≡ 3 (mod 4) which we have just seen is impossible.
Thus the only solutions are given by n = 1, and x = 3 or −3.

4. A set of 1989 numbers is given. It is known that the sum of any 10 of them is positive.
Prove that the sum of all of these numbers is positive. (Folklore, 3 points)

Solution. Call a sum of 10 of the numbers, a 10-sum. There are
(
1989
10

)
such 10-sums (but

we don’t need this fact). Form the sum S of all the 10-sums of the 1989 numbers. Since
each 10-sum is positive, S is also positive. Now each number is in the same number k of
different 10-sums. (In fact, k =

(
1989

9

)
, but all we need to know is that k > 0). Thus the

sum of all 1989 numbers is S/k, and so is positive.

5. Find the positive integer solutions of the equation

x +
1

y +
1

z

=
10

7

(G. Galperin, 3 points)

Solution. First write
x +

1

y +
1
z

= 1 +
3
7

and observe that since y, z are positive integers

0 <
1

y +
1
z

< 1

and so since x is also a positive integer

x = 1 and
1

y +
1
z

=
3
7

and hence
y +

1
z

=
7
3

= 2 +
1
3
.

Arguing as before, we necessarily have

y = 2 and
1
z

=
1
3
.

Thus x = 1, y = 2, z = 3 is the only solution among the positive integers.

2



6. For every natural number n prove that(
1 +

1

2
+ · · ·+ 1

n

)2

+

(
1

2
+ · · ·+ 1

n

)2

+ · · ·+
(

1

n− 1
+

1

n

)2

+

(
1

n

)2

= 2n−
(

1 +
1

2
+ · · ·+ 1

n

)
(S. Manukian, Yerevan, 4 points)

Solution. Define the proposition

P (n) :
(

1 +
1
2

+ · · ·+ 1
n

)2

+
(

1
2

+ · · ·+ 1
n

)2

+ · · ·+
(

1
n

)2

= 2n−
(

1 +
1
2

+ · · ·+ 1
n

)
We prove P (n) for all natural numbers n by induction. Firstly, P (1) is true, since

LHS of P (1) =
(

1
1

)2

= 1 = 2.1− 1 = RHS of P (1)

Now we show P (k) =⇒ P (k + 1). Thus we assume P (k), i.e. that(
1 +

1
2

+ · · ·+ 1
k

)2

+
(

1
2

+ · · ·+ 1
k

)2

+ · · ·+
(

1
k

)2

= 2k −
(

1 +
1
2

+ · · ·+ 1
k

)
and show P (k + 1) follows:

LHS of P (k + 1) =
(

1 +
1
2

+ · · ·+ 1
k

+
1

k + 1

)2

+
(

1
2

+ · · ·+ 1
k

+
1

k + 1

)2

+ · · ·+
(

1
k + 1

)2

=
(

1 +
1
2

+ · · ·+ 1
k

)2

+
(

1
2

+ · · ·+ 1
k

)2

+ · · ·+
(

1
k

)2

+ 2
(

1 +
1
2

+ · · ·+ 1
k

)
1

k + 1

+ 2
(

1
2

+ · · ·+ 1
k

)
1

k + 1
+ . . .

+ 2
(

1
k

)
1

k + 1
+ (k + 1)

(
1

k + 1

)2

= 2k −
(

1 +
1
2

+ · · ·+ 1
k

)
+ 2

(
1 + 2 · 1

2 + 3 · 1
3 + · · ·+ k · 1

k

) 1
k + 1

+
1

k + 1

= 2k −
(

1 +
1
2

+ · · ·+ 1
k

)
+

2k

k + 1
+

1
k + 1

= 2k −
(

1 +
1
2

+ · · ·+ 1
k

)
+ 2− 1

k + 1

= 2(k + 1)−
(

1 +
1
2

+ · · ·+ 1
k

+
1

k + 1

)
= RHS of P (k + 1)

Thus we have shown P (k + 1) follows from P (k).
So, by induction, P (n) is true for all natural numbers n as was required to be shown.
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senior questions: Years 11, 12

1. We define N !! to be N(N − 2)(N − 4) . . . 5.3.1 if N is odd and N(N − 2)(N − 4) . . . 6.4.2
if N is even. For example, 8!! = 8.6.4.2 and 9!! = 9.7.5.3.1. Prove that 1986!! + 1985!! is
divisible by 1987. (V. V. Proizvolov, Moscow, 5 points)

Solution.

1986!! + 1985!! = (1987− 1)(1987− 3) . . . (1987− 1985) + 1.3 . . . 1985
≡ (−1).(−3) . . . (−1985) + 1.3 . . . 1985 (mod 1987)

≡ (−1)
1986

2 1.3 . . . 1985 + 1.3 . . . 1985 (mod 1987)
≡ −(1.3 . . . 1985) + 1.3 . . . 1985 (mod 1987)
≡ 0 (mod 1987)

i.e. 1986!! + 1985!! is divisible by 1987.

2. The numbers 21989 and 51989 are written out one after the other (in decimal notation).
How many digits are written altogether? (G. Galperin, 3 points)

Solution. For some integers k, ` we have

10k < 21989 < 10k+1 and 10` < 51989 < 10`+1

and hence
10k+` < 21989.51989 = 101989 < 10k+`+2

Thus we have k + ` + 1 = 1989, the number of digits in 21989 is k + 1, and the number of
digits in 51989 is ` + 1. So the total number of digits in 21989 and 51989 is k + ` + 2 = 1990
digits.

3. For which natural number k does
k2

1.001k

attain its maximum value? (4 points)

Solution. First observe that ak = k2/1.001k is positive for all natural numbers k. Also
observe that the ratio ak+1/ak of successive values of ak,

(k + 1)2

1.001k+1

/
k2

1.001k
=

(1 + 1
k )2

1.001

is greater than 1, if (1 + 1
k )2 > 1.001 and less than 1 otherwise, i.e. ak is increasing if

(1 + 1
k )2 > 1.001 and decreasing otherwise. Observe that if for some k0, (1 + 1

k0
) < 1.001

then (1+ 1
k ) < 1.001 for all k > k0. Thus the last value k for which ak+1 > ak is the largest

natural number k for which

(1 +
1
k
)2 > 1.001

(k + 1)2 > 1.001k2

0.001k2 − 2k < 1

k2 − 2000k < 1000
k(k − 2000) < 1000
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Now the graph of f(k) = k(k−2000) is an upright parabola and f(k) ≤ 0 for 1 ≤ k ≤ 2000,
and f(k) ≥ 2000 for k > 2000. So the largest natural number k for which k(k − 2000) <
1000 is 2000. So a2001 > a2000, but ak is decreasing for k ≥ 2001. Thus ak attains its
maximum value for k = 2001.

4. For any natural number n ≥ 2 prove the inequality√√√√
2

√
3

√
4 . . .

√
(n− 1)

√
n < 3.

(V. Proizvolov, Moscow, 5 points)

Solution. We prove the proposition

P (m) :

√
m

√
(m + 1)

√
. . .
√

n < m + 1

for each integer m such that 2 ≤ m ≤ n, by a reverse induction, i.e. we first show P (n)
and then show P (m + 1) =⇒ P (m). Now

√
n < n < n + 1 and hence P (n) is true. Now

assume P (m + 1) for some m < n, i.e. that√
(m + 1)

√
(m + 2). . .

√
n < m + 2

Then √
m

√
(m + 1)

√
(m + 2). . .

√
n <

√
m(m + 2)

< m + 1

and so we have that P (m) follows from P (m + 1). Thus, by induction, P (m) is true for
all integers m such that 2 ≤ m ≤ n. In particular, we have for m = 2,√√√√

2

√
3

√
4 . . .

√
(n− 1)

√
n < 3.

(M. F. Newman)

5. What is the final digit of 7777
77

7

?

Solution. Firstly, we will call an expression of the form

7777
..

.7

a tower of 7s. Our problem has a tower of 7 7s. Observe that

74 = (72)2 ≡ (−1)2 ≡ 1 (mod 10).
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Hence, modulo 10,

7k ≡


1 if k ≡ 0 (mod 4)
7 if k ≡ 1 (mod 4)
−1 if k ≡ 2 (mod 4)
−7 if k ≡ 3 (mod 4),

where k is a natural number. Thus to determine the last digit of a tower of 7 7s, we need
to determine what a tower of 6 7s is congruent to modulo 4. Now, 7 ≡ −1 (mod 4). Hence,
modulo 4,

7m ≡

{
1 if m is even
−1 if m is odd,

where m is a natural number. A tower of 5 7s is certainly odd. So, a tower of 6 7s is
congruent to −1 modulo 4 (and −1 ≡ 3 (mod 4) ). So, a tower of 7 7s is congruent to −7
modulo 10 (and −7 ≡ 3 (mod 10) ). Hence, a tower of 7 7s must end in a 3.

6. When 44444444 is written in decimal notation, the sum of its digits is A. Let B be the
sum of the digits of A. Find the sum of the digits of B.

Solution.
• First we will show that the sum of the digits of B is fairly small. Now 4444 < 10 000 =

104. Hence
44444444 < 104.4444 = 1017776,

and so 44444444 cannot have more than 17 776 digits. Thus, A the sum of the digits
of 44444444, cannot be more than 17 776.9 = 159 984, (since each digit is at most a
9). Of the natural numbers less than or equal to 159 984, the number with the largest
digit sum is 99 999. So B is not more than 45. Of the natural numbers less than or
equal to 45, the number with the largest digit sum is 39. So the sum of the digits of
B is not more than 12.

• Using Lemma 3 of the notes repeatedly, we see that 44444444 is congruent to its digit
sum A, modulo 9, which is congruent to its digit sum B, modulo 9, which is congruent
to its digit sum, modulo 9. That is,

44444444 ≡ A ≡ B ≡ (sum of the digits of B) (mod 9)

• Now we determine what 44444444 is congruent to modulo 9.

44444444 ≡ (4 + 4 + 4 + 4)4444 (mod 9)
≡ 164444 (mod 9)
≡ (−2)4444 (mod 9)
≡ (−2)3.1481+1 (mod 9)

≡
(
(−2)3

)1481
.(−2) (mod 9)

≡ (−8)1481.(−2) (mod 9)
≡ 11481.(−2) (mod 9)
≡ 1.(−2) (mod 9)
≡ 7 (mod 9)

Putting these three facts together we have that the sum of the digits of B is both congruent
to 7 modulo 9, and a natural number less than or equal to 12. Thus the sum of the digits
of B is 7.
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