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Individual Questions 100 minutes

General instructions: There are 16 questions. Each question has an answer that is a
positive integer less than 1000. Calculators are not permitted. Diagrams are provided to
clarify wording only, and should not be expected to be to scale.

1. The regular hexagon ABCDEF shown, has area 24.

What is the area of △ABD?

A B

C

DE

F

[1 mark]

2. How many digits are needed to write the expression 87 × 525 in full? [1 mark]

3. After 15 women leave a party, there are 3 times as many men as women.
Later 40 men leave, so that then 7 times as many women as men remain.

How many women were there at the start of the party? [1 mark]

4. Emilia wants to learn her multiplication tables up to 12.
She already knows her multiplication tables up to 6,
and she knows that multiplication is commutative.
How many products will she have to memorise (on top of the ones she already knows)?

Notes.
• By multiplication tables up to n we mean all products a × b where a and b are
integers from 1 to n.
• To say that multiplication is commutative, means that the order of the factors of
the product doesn’t matter, i.e. a× b = b× a. So, once Emilia has learnt the value
of a× b, she has effectively also learnt the value of b× a.

[1 mark]

5. The numbers 146, a, b, c, d, 339 form an arithmetic sequence (these numbers need not all
be integers).

What is a+ b+ c+ d?

Note. Numbers x1, x2, x3, . . . , xn form an arithmetic sequence, if the difference between



consecutive terms is some constant ∆, that is,

∆ = x2 − x1 = x3 − x2 = · · · = xn − xn−1.

For such a sequence, ∆ is called the common difference.
For example, 1, 3, 5, 7 form an arithmetic sequence with common difference 2. [2 marks]

6. Call a positive integer lightweight, if the product of its digits is less than the sum of its
digits.

How many lightweight positive integers less than 100 are there? [2 marks]

7. A calculator used to sell for $200 but then the price increased by x%.
Fortunately, a sale is on now with a price reduction of x% and
the calculator is now selling for $182.

What is x? [2 marks]

8. In a rectangle ABCD with length 140 and width 105,
let the feet of the perpendiculars dropped from A and
C to the diagonal BD be X and Y , respectively.

Find the distance XY .

A

Y

B

C

X

D
[2 marks]

9. Bella went for a work-out around a square park of side 400 metres.
Along the first side, she walked at 6 km/h.
Then she jogged along the second side at 12 km/h.
Along the third side she sprinted at 18 km/h.
Along the final side, Bella rode her bicycle at a furious 36 km/h.

How many km/h was Bella’s average speed around the block? [3 marks]

10. How many positive integers less than or equal to 1000, have 5 as their smallest prime
factor? [3 marks]

11. A palindromic number is one that reads the same forwards and backwards, such as 6116
and 54345.

How many 4-digit palindromic numbers are divisible by 7? [3 marks]

12. A line intersects two concentric circles in points A,
B, C, D, as shown in the diagram.
Each of the line segments AB and CD has length 15,
and line segment BC has length 46.
Let S be the area of the shaded region between the
two circles.

Find S/π.

A
CB

D

[3 marks]



13. A mathematical contest consisted of three problems A, B, and C. The following facts
are known.
(i) The 36 contestants all solved at least one of the three problems.
(ii) Of all the contestants who did not solve problem A, the number who solved B was

twice the number who solved C.
(iii) The number of contestants who solved only problem A was one more than the

number of contestants who solved A and at least one other problem.
(iv) Of all contestants who solved just one problem, half did not solve problem A.
How many contestants solved only problem B? [4 marks]

14. Let x and y be integers satisfying

2024x + 4049 = |2024− y|+ y.

Find the remainder when x+ y is divided by 1000.

Note. |a| is the absolute value of a, which is the distance that a is from 0, on the number
line; essentially, the sign of a negative number is stripped away.
For example, |−5| = 5 and |5| = 5. [4 marks]

15. Find the sum of all positive integers n satisfying the following two conditions:
(i) n is less than or equal to 400, and
(ii) n has exactly 9 positive divisors.

[4 marks]

16. Consider a quarter-circle OAB of radius 92, with centre O, and perpendicular radii OA
and OB.
Inside quarter-circle OAB are drawn a semicircle with diameter OB and a small circle.
The small circle touches:

the semicircle externally at one point, and
the quarter-circle at a point on OA and a point on arc AB.

What is the radius of the small circle? [4 marks]
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Team Question 50 minutes

General instructions: Calculators are (still) not permitted.
Answer each of parts A. to K. on the Answer Sheets.
Where indicated, a full explanation of how you found your answer, or the strategy for
finding a solution, must be given.

Bulgarian Solitaire

Today we play Bulgarian Solitaire.
We start with n cards split into several piles, called a layout.
At each step of the game, we perform the following process.

From each pile of the current layout one card is taken;
then a new pile is created from the removed cards.

If a pile becomes empty, then that pile ceases to exist.
In this way, the reduced piles and new pile form a new layout of the n cards.

A layout is represented as a decreasing sequence of the numbers of cards in each of its
piles, in brackets. For example, a layout of 11 cards, where the piles contain 7, 2, and 2
cards, would be represented by: (7, 2, 2).
The transition from one layout to the next, is indicated by an arrow (→).
Thus, with (7, 2, 2) as our starting layout, the game of Bulgarian Solitaire would proceed
as follows:

(7, 2, 2)→ (6,3, 1, 1)→ (5,4, 2)→ (4,3, 3, 1)→ (4, 3, 2, 2)→ . . .

An alternation of layouts and arrows, as above, is called a transition sequence.
Note. The number representing the new pile formed at each step, is shown in bold, to help
you follow the process.

A. Continue the transition sequence above, for 5 more steps from (4, 3, 2, 2).

What do you notice?

If we first find all possible layouts of n cards and then place arrows showing all ways of
transitioning from one layout to another, we obtain the complete transition diagram
for n (where each possible layout appears exactly once).
As an example, we find the complete transition diagram for n = 3. First we find all
the layouts of 3 cards:

(3), (2, 1), (1, 1, 1).

Placing the transition arrows, the complete transition diagram for n = 3 is:

(1, 1, 1) (3) (2, 1)



B. Draw the complete transition diagram for n = 4.
Advice: be systematic to ensure you don’t miss any possible layout.

C. Draw the complete transition diagram for n = 5.

D. Draw the complete transition diagram for n = 6.

E. Explain why the game of Bulgarian Solitaire always cycles; that is, whatever layout we
start with, at some point the transition sequence will reach a layout that has already
appeared.

It will be convenient to define two more terms.
If in the complete transition diagram layout L transitions to M , i.e. L → M , then
M is called the successor of L, and any layout K that transitions to L is called a
predecessor of L.

F. Show that, for each n ⩾ 3, there exists a layout that has no predecessor; in other words,
a layout that will never appear in a transition sequence unless it is a starting layout.

G. Show that, for each n ⩾ 3, the complete transition diagram contains a layout with
more than one predecessor.

H. If a layout has m piles, what are all the possible numbers of piles of its successor?
Justify your answer.

I. What defining property must a layout have such that it has the same number of piles
as its successor?
Justify your answer.

J. Describe all the layouts that are identical to their successor.
Justify your answer.

K. A 2-cycle is a pair of distinct layouts L and M , such that each is the successor of the
other. In other words, the complete transition diagram contains

L←→M.

Find two different 2-cycles.
Find any other 2-cycle, or explain how other 2-cycles can be found.



Individual Questions Solutions

1. Answer: 8. Let O be the centre of the hexagon.
Diagonals AD, BE and CF , pass through O and partition ABCDEF into six congruent
equilateral triangles, each of area 24/6 = 4.
Observe that BD partitions each of △BCO and △CDO into two triangles of equal
area.

A BX

O

DE

F C

∴ |ABD| = |ABO|+ |OBD|
= |ABO|+ |CBO|
= 4 + 4

= 8.

Alternatively, drop perpendicular from O to X on AB. Then OX partitions △ABO
into two smaller congruent triangles, so that now △ADB is partitioned by OX, OB
and OC into four triangles congruent to OAX, i.e.

|ABD| = 4|OAX|
= 4 · 1

2
· |ABO|

= 8.

2. Answer: 24.

87 × 525 = (23)7 × 525

= 221 × 525

= 1021 × 54

= 252 × 1021

= 625× 1021,

which is 625 followed by 21 zeros, 24 digits in all.

3. Answer: 29. Let m,w be the numbers of men and women, respectively, at the start of
the party. Then (1) and (2) follow from the given information:

3(w − 15) = m (1)

7(m− 40) = w − 15 (2)

∴ 21(m− 40) = m

20m = 21 · 40
m = 42

∴ 7(42− 40) = w − 15

w = 14 + 15

= 29.

Therefore, originally there were 29 women (and 42 men).

Alternatively, working backwards, let x be the number of men remaining after 40 of



them have left the party.
Then the number of the women, after 15 women left the party, is 7x.
So, the total number of the men at the start of the party is

3(7x) = x+ 40

∴ 20x = 40

x = 2.

Hence, the number of women at the start of the party was

7x+ 15 = 7 · 2 + 15

= 29.

4. Answer: 57. By knowing commutativity, we may assume that Emilia in learning the
multiplication tables up to 6, she learnt the products a × b, for which a ⩾ b with
1 ⩽ a ⩽ 6:

1× 1

2× 1, 2× 2

...

6× 1, 6× 2, . . . , 6× 6

and has yet to learn:

7× 1, 7× 2, . . . , 7× 7

8× 1, 8× 2, . . . , 8× 7, 8× 8

...

12× 1, 12× 2, . . . , 12× 7, 12× 8, . . . , 12× 12

which is:

7 + 8 + · · ·+ 12 = 1
2
· 6 · (7 + 12)

= 3 · 19
= 57 products.

Alternatively, in multiplication tables up to n, there are n2 products,
n of which are of form a× a, since a ∈ {1, 2, . . . , n} (n possibilities for a).

Emilia needs to memorise only half of the remaining products, i.e. of a× b and b× a for
any pair of distinct a, b, she only needs to memorise one.

That is, the number of products of multiplication tables up to n, that Emilia needs to
memorise is:

n+ 1
2
(n2 − n) = 1

2
· n · (2 + n− 1)

= 1
2
· n(n+ 1).

So Emilia knows 1
2
· 6(6 + 1) products (the number in multiplication tables up to 6),

leaving the number of products she has yet to learn to be
1
2
· 12(12 + 1)− 1

2
· 6(6 + 1) = 6 · 13− 3 · 7

= 78− 21

= 57.



5. Answer: 970. Let the common difference be ∆. Then

5∆ = 339− 146

= 193

a = 146 + ∆

b = 146 + 2∆

c = 146 + 3∆

d = 146 + 4∆

a+ b+ c+ d = 4 · 146 + 10∆

= 4 · 146 + 2 · 193
= 584 + 386

= 970.

Alternatively, with ∆ as above,

a = 146 + ∆

b = 146 + 2∆

c = 339− 2∆

d = 339−∆

∴ a+ b+ c+ d = 2(146 + 339)

= 2 · 485
= 970.

6. Answer: 26. Let n be a lightweight number less than 100.

Suppose n has one digit, then its digit sum and digit product are the same  .
So, in fact, n cannot have one digit.

Therefore, n has two digits. Let those digits (in some order) be a, b where a ⩽ b.
Consider cases according to a.
Case 1: a ⩾ 2. Then

ab ⩾ 2b

⩾ a+ b 

So there are no such lightweight numbers.
Case 2: a = 1. Then

ab = b

< 1 + b = a+ b.

So all such numbers, namely 11, 12, . . . , 19 together with 21, 31, . . . , 91
(9 + 8 = 17 of them) are lightweight.

Case 3: a = 0. Then a is necessarily the second digit, and b is necessarily non-
zero, and

ab = 0

< 0 + b = a+ b,

so that, again, all such numbers, namely 10, 20, . . . , 90 (9 of them) are
lightweight.



Thus, in total there are 9 + 8 + 9 = 26 lightweight numbers below 100.

Alternatively, let n be a lightweight number less than 100.

Suppose n has one digit, then its digit sum and digit product are the same  .
So, in fact, n must have two digits.
Let n = ab be its decimal digit representation. Then

ab < a+ b

∴ (a− 1)(b− 1) < 1

Therefore, one of a, b is at most 1.
Hence the possibilities are:

10, 11, . . . , 19 (10 possibilities),
20, 30, . . . , 90 (8 possibilities),
21, 31, . . . , 91 (8 possibilities),

which, in all, is 26 possibilities.

7. Answer: 30.
After the price increase the price of the calculator (in dollars) became 200(1 + x/100).
Then the price reduced x% during the sale so that the price is now

182 = 200(1 + x/100)(1− x/100)

= 200(1 + y)(1− y), substituting y for x/100

= 200(1− y2)

= 200− 200y2

∴ 200y2 = 200− 182

= 18

y2 = 0.09

x/100 = y = 0.3

x = 30.

8. Answer: 49.

△CBY ∼= △ADX, by AAS: ∠B = ∠D, alt. angles

∠X = ∠Y = 90◦

CB = AD
or by a half-turn about midpt(BD)

∼ △BDA, by AA: ∠D common

∠X = ∠A = 90◦.

Also observe that AD : AB = 105 : 140 = 3 : 4, so that △ADB is a 3 : 4 : 5 right
triangle scaled by 35, giving BD = 5 · 35. Hence



A

Y

B

C

X

D

DX

AD
=

DA

BD

=
AD

BD

∴ DX =
AD2

BD
∴ XY = BD − 2DX

= 5 · 35− 2(3 · 35)2

5 · 35
= 7(52 − 2 · 32)
= 49.

Alternatively, after having observed AD : AB = 3 : 4, with the similarities,

△CBY ∼ △ADX ∼ △BDA,

we have,

Y B : Y C : CB = XD : XA : AD = AD : AB : BD = 3 : 4 : 5

∴ XY = BD −XD − Y B

= 5
3
· AD − 3

5
· AD − 3

5
·BC

= (5
3
− 2 · 3

5
)AD

=
52 − 2 · 32

3 · 5
· 105

= (25− 18) · 7
= 49.

9. Answer: 12. Let d be the length of the side length of the block (in km). Then

average speed =
total distance

total time

=
4d

d/6 + d/12 + d/18 + d/36

=
4

1
6
+ 1

12
+ 1

18
+ 1

36

=
4 · 36

6 + 3 + 2 + 1
= 12 km/h

Note. The average speed here turns out to be the reciprocal of the average of the
reciprocals of the 4 speeds (which is the harmonic mean of the 4 speeds).
The arithmetic mean of the speeds happens to be: 1

4
(6 + 12 + 18 + 36) = 18 km/h, but

is not the answer to this problem.

Alternatively, 6 km/h for 400m takes 6/400 = 1/15 h = 4min.
So (by proportion), the legs at 12 km/h, 18 km/h, 36 km/h take 2, 4/3, 2/3min.,
respectively, a total of 4 + 2 + 4/3 + 2/3 = 8min. = 2/15 h,
and 1.6 km in 2/15 h is an average speed of 1.6/(2/15) = 0.8 · 15 = 12 km/h.



10. Answer: 67. Let N5 be the number of natural numbers less than or equal to 1000 that
have 5 as a prime divisor; this is every 5th one, i.e.

N5 = 1000/5

= 200.

Now let N2,5 be the number of natural numbers less than or equal to 1000 that have
both 2 and 5 as prime divisors. Similarly, we define N3,5 and N2,3,5.

Of the N5 numbers less than or equal to 1000 with 5 as a prime divisor,
every second one has 2 as a prime divisor (N2,5 of them), and
every third one has 3 as a prime divisor (N3,5 of them).

But subtracting N2,5 and N3,5 from N5 means we have un-counted N2,3,5 (the number
of such numbers with 2, 3 and 5 as prime divisors) twice, and so we should count N2,3,5

back in, once.

So the number of integers between 2 and 1000 with 5 as their smallest prime divisor is:

N5 −N2,5 −N3,5 +N2,3,5

= 200− 200/2− ⌊200/3⌋+ ⌊200/6⌋
= 200− 100− 66 + 33

= 67.

Note. Above we used ⌊x⌋, the floor of x, which is the largest integer n such that n ⩽ x.

11. Answer: 18. A 4-digit palindromic number has the form abba where a ̸= 0, and

abba = 1000a+ 100b+ 10b+ a

= 1001a+ 110b.

Now 1001 = 7× 143, but 7 does not divide 110.
So for abba to be divisible by 7, we just need b to be divisible by 7.

Thus, abba is divisible by 7, precisely when b = 0 or b = 7.
For each of these two b values a can take any of 9 values.

Hence, the total number of 4-digit palindromic numbers that are divisible by 7, is
2× 9 = 18.

12. Answer: 915. Let r, R be the radii of the small and large circles, respectively.
Let M be the midpoint of BC, and let a be the distance from the circles’ centre to M .
We have AB = CD = 15 and BM = MC = 1

2
· 46 = 23. Thus,

15 1523 23

a r
R

MA
B

C D

S = πR2 − πr2

= π(R2 − r2)

∴ S/π = R2 − r2

= (a2 + (15 + 23)2)− (a2 + 232)

= (15 + 23)2 − 232

= (15 + 23 + 23)(15 + 23− 23)

= 61 · 15
= 915.



Note. The region between two concentric circles is called an annulus.

Alternatively, draw a line through A and the common centre of the circles, meeting
the small circle in points X and Y . As above, we have S = π(R2− r2) but then use the
theorem below.

15 46

rR

A

Y

X

B C

∴ S/π = R2 − r2

= (R− r)(R + r)

= AX · AY
= AB · AC, by Theorem

= 15 · (15 + 46)

= 15 · 61
= 915.

Theorem. If two lines through a point A meet a circle K at points B,C and X, Y ,
respectively (see diagram), then

AB · AC = AX · AY.

Proof. Since BXY C is cyclic, its exterior angle at B and interior opposite angle at Y
are equal, i.e.

∠ABX = ∠XY C

= ∠AY C, same angle

Also, ∠BAX = ∠Y AC, same angle

∴ △ABX ∼ △AY C, by AA Rule

∴
AB

AX
=

AY

AC
∴ AB · AC = AX · AY. □

Note. The theorem is true whether the point A is inside or outside of the circle K;
when A is inside K, the theorem is often called the Bowtie Theorem.
Also, one can show that the common value of AB · AC and AX · AY depends only on
the distance d of A from the centre of K and the radius r of K, and this common value,

d2 − r2,

is called the Power of A (relative to circle K). The astute reader will note that the
above value is negative when A is inside K, and indeed the Power of A is defined to be
negative inside A via a directed segment convention for the line segments AB and AC,
and for AX and AY .

13. Answer: 9. Identify sets A, B and C with problems A, B and C, and
let a, b, c, d, e, f, g ⩾ 0 be the numbers of contestants solving the problems corresponding
to the regions in the Venn Diagram shown, so that, in particular, a, b, and c are the



numbers of contestants solving A only, B only, and C only, respectively.

a b

c

de

f

g

A B

C

Since all 36 contestants solved at least one problem,

by (i), a+ b+ c+ d+ e+ f + g = 36. (1)

By (ii), b+ d = 2(c+ d)

∴ d = b− 2c, (2)

and, in particular, b ⩾ 2c. (3)

By (iv), (a+ b+ c)/2 = b+ c

∴ a = b+ c. (4)

By (iii), e+ f + g = a− 1

= b+ c− 1. (5)

Then, by (1), (4), (2), (5), (b+ c) + b+ c+ (b− 2c) + (b+ c− 1) = 36

4b+ c = 37 (6)

∴ c ≡ 1 (mod 4).

So now, c = 1 or c ⩾ 5.
But c ⩾ 5 implies by (6), that b ⩽ 8 so that b < 2c, contradicting (3).
Therefore, c = 1 and b = 9.
Checking the other conditions we have: a = b + c = 10, d = b − 2c = 7, e + f + g =
a− 1 = 9.

14. Answer: 37. Let us label the given equation:

2024x + 4049 = |2024− y|+ y. (∗)

Since |2024− y| is either 2024− y or −2024 + y, RHS(∗) involves 0y or 2y.
Therefore, RHS(∗) is an even integer.

Now for LHS(∗) to be an integer, x ⩾ 0.
But for x ⩾ 1, 2024x is even, making LHS(∗) odd .
Therefore, x = 0 and

LHS(∗) = 20240 + 4049

= 1 + 4049

= 4050, (even).

Now we have two cases.



Case 1: y ⩽ 2024. Then

4050 = 2024− y + y

= 2024  

Case 2: y > 2024. Then

4050 = y − 2024 + y

6074 = 2y

y = 3037

∴ x+ y = 3037.

So there is just the one solution (x, y) for the equation, for which x + y = 3037, which
on division by 1000, leaves remainder 37.

15. Answer: 813. A natural number with prime factorisation pe11 pe22 · · · p
ek
k has

(e1 + 1)(e2 + 1) · · · (ek + 1) positive divisors,

where pi are prime and ei ∈ N. So, by (ii), first we need to determine how we might
write 9 as the product of factors of form (ei + 1) where each ei + 1 ⩾ 2, and from that
deduce the form of n:

9 = 8 + 1 =⇒ n = p81

= (2 + 1)(2 + 1) =⇒ n = p21p
2
2, p1 ̸= p2.

So the form of n is p8 or p21p
2
2, for some primes p, p1 ̸= p2.

Notice each form says n is a square.
Hence, n = m2, where m = p4 or m = p1p2 and by (i), m ⩽ 20 =

√
400.

Now m = p4 ⩽ 20 implies p = 2 (and m = 16),
or m = p1p2 ⩽ 20, p1 ̸= p2 implies p1p2 = 2 · 3, 2 · 5, 2 · 7 or 3 · 5 (i.e. m = 6, 10, 14 or 15).
So the sum of all possible values of n = m2 is,

162 + 62 + 102 + 142 + 152 = 256 + 36 + 100 + 196 + 225

= 813.

Note. It is well-known that a number n has an odd number of positive divisors if and
only if n is a perfect square. To see why, observe that when an odd number is written
as the product of factors of the form ei + 1 each such factor must be odd which in turn
implies each ei is even. So n is a product of even powers of primes, and so is a square.
Alternatively, note that all positive divisors of n come in pairs (a, b = n/a). So we find
that the number of positive divisors of n is even, except in the case where for one of the
pairs a = b = n/a, exactly when n = a2 for some integer a.

16. Answer: 23. Let X be the centre of the semicircle.
Let O′ be the centre of the small circle, and r be its radius.
Let OO′ meet the quarter-circle arc AB at P .
Let Y , W be the feet of the perpendiculars dropped from O′ to OB, OA, respectively.
Let R be the radius of the semicircle, so that the radius of the quarter-circle is 2R.
Let x = Y O′(= OW , since rightangles at ∠Y , ∠O and ∠W , make Y OWO′ a rectangle,
so that also OY = r).
Note that where circles touch they have a common tangent.
Consequently, XO′ passes through the point where the semicircle and small circle touch,



and O, O′, P are collinear. Hence,

AO W

B

X

Y
O′ P

x

R

r r

r

R− r

x2 = XO′2 −XY 2

= (R + r)2 − (R− r)2

= 4Rr

OO′ = OP −O′P

= 2R− r

Then, x2 + r2 = (2R− r)2

∴ 4Rr = (2R− r)2 − r2

= (2R− 2r) · 2R
∴ r = R− r

2r = R

∴ r = 1
4
· 2R

= 1
4
· 92

= 23.



Team Question Solutions

Bulgarian Solitaire

A.

(4, 3, 2, 2)→ (4, 3, 2, 1, 1)→ (5, 3, 2, 1)→ (4, 4, 2, 1)→ (4, 3, 3, 1)→ (4, 3, 2, 2)

We notice the last two steps are the same as earlier steps (or at least that
first_step = last_step

for what is shown in this answer).

B. For n = 4, the possible layouts are:

(4), (3, 1), (2, 2), (2, 1, 1), (1, 1, 1, 1).

And so the complete transition diagram for n = 4 is:

(1, 1, 1, 1) (4) (3, 1) (2, 2) (2, 1, 1)

C. For n = 5, the possible layouts are:

(5), (4, 1), (3, 2), (3, 1, 1), (2, 2, 1), (2, 1, 1, 1), (1, 1, 1, 1, 1).

And so the complete transition diagram for n = 5 is:

(1, 1, 1, 1, 1) (5) (4, 1) (3, 2)

(2, 2, 1)

(3, 1, 1)

(2, 1, 1, 1)

D. For n = 6, the possible layouts are:

(6), (5, 1), (4, 2), (4, 1, 1), (3, 3), (3, 2, 1), (3, 1, 1, 1),

(2, 2, 2), (2, 2, 1, 1), (2, 1, 1, 1, 1), (1, 1, 1, 1, 1, 1).

And so the complete transition diagram for n = 6 is:

(1, 1, 1, 1, 1, 1) (6) (5, 1) (4, 2) (3, 2, 1)

(3, 3)(4, 1, 1)(2, 2, 1, 1) (2, 2, 2) (3, 1, 1, 1)

(2, 1, 1, 1, 1)



E. The process at each step of the game, always produces some layout and that layout is
determined by the previous layout.
For any n, each layout is a partition of n, of which there are only a finite number.
So eventually we must hit a layout seen before, and since the process is the same as
before, the layouts from there repeat.

F. Answer: (1, 1, . . . , 1) (n piles of size 1). We find this layout by looking for patterns in
the complete transition diagrams for n = 3, 4, 5, 6.

Proof that (1, 1, . . . , 1) has no predecessor. Suppose the layout (1, 1, . . . , 1) (with
n piles) has a predecessor.
One of the numbers in the layout is the number of piles of the predecessor.
So the predecessor has a single pile and has layout (n).
But the successor of (n) is (n− 1, 1) which differs from (1, 1, . . . , 1) when n ⩾ 3 . □

Note. There are other layouts with this property, namely any layout for which the
number of piles is at least 2 more than the largest pile-size.

Proof that such layouts have no predecessor. Suppose m is the largest pile-size
of the layout, and the layout is (a1, a2, . . . , aℓ) where a1 = m and ℓ ⩾ m+ 2, and that
for a contradiction, it has a predecessor.
Then the predecessor has ℓ − 1 piles that have size ai + 1, and a certain number k of
piles of size 1. Thus the number of piles of the predecessor is ℓ − 1 + k, which is at
least m+ 1 so cannot be an ai  . □

G. Answer: (n−1, 1). We find this layout by looking for patterns in the complete transition
diagrams for n = 3, 4, 5, 6.

Proof (that example has the required property). Assume n ⩾ 3.
Layout (n) has 1 pile of size n ⩾ 3; so its successor is (n− 1, 1).
Layout (2, 1, . . . , 1) has 1 pile of size 2 and n− 2 piles of size 1; so n− 1 piles in total.
Thus its successor is (n− 1, 1).
Layouts (n) and (2, 1, . . . , 1) are different layouts when n ⩾ 3;
so, for each n ⩾ 3, (n− 1, 1) has at least two predecessors. □

Proof of existence of layout with multiple predecessors. Let n ⩾ 3 and
let ℓ = #layouts = #arrows, in the complete transition diagram.
(The numbers of layouts and arrows are equal since after each layout is one arrow.)
By F., there exists a layout with no predecessor

=⇒ at least one layout has no arrow pointing to it

=⇒ ℓ arrows point to at most ℓ− 1 layouts

=⇒ (by Pigeonhole Principle) some layout has more than 1 arrow pointing
to it

=⇒ there is a layout with more than one predecessor.
□



H. Answer: all natural numbers up to m+ 1.

Proof. Call the layout L. Then L has m piles.
Let L have k piles of size 1, and hence m− k piles of size greater than 1.
Then k ∈ {m,m− 1, . . . , 1, 0} and so for L’s successor,

1 new pile (of size m) is created,
k piles (the piles of L of size 1) cease to exist, and
m − k piles still exist (but their size in the successor of L has been reduced
by 1).

That is, the number of piles of L’s successor, is:

1 +m− k ∈ {1 +m,m, . . . , 1},
which is all natural numbers up to m+ 1. □

I. Answer: the layout must have exactly 1 pile of size 1.

Proof. Call the layout L and suppose L has m piles, k of which are of size 1.
Then by the argument of H., L’s successor has 1 +m− k piles, and

1 +m− k = m if and only if k = 1. □

Alternative proof. During a transition,
1 new pile is gained, and exactly the piles of size 1 are lost.

For layout and successor to have the same number of piles,

1 = #“gained piles” = #“lost piles”

= #“piles of a layout of size 1”,

i.e. the layout must have exactly 1 pile of size 1. □

J. Answer: (m,m− 1, . . . , 2, 1) where n = 1
2
m(m+ 1).

Proof. Let L be a layout and suppose L has m piles.
Firstly, the number of piles must stay the same, and so by I., L has exactly one pile of
size 1.

If m = 1, then we see that indeed (1)→ (1), i.e. the layout (1) is equal to its successor.

Now assume k is in L, for some k such that 1 ⩽ k < m.
Then k + 1 must be in L, in order for k to be in L’s successor.

Hence each of 1, 2, . . . ,m must be in L, but this is already m piles.
So L must be (m,m− 1, . . . , 2, 1).

Conversely, if L is (m,m− 1, . . . , 2, 1) then L’s successor has
a newly created pile of size m,
(the pile of L of size 1 has ceased to exist,) and
the reduced piles m− 1,m− 2, . . . , 1,

so that L’s successor is indeed (m,m− 1, . . . , 2, 1), itself. □

And we note that n = 1 + 2 + · · ·+m = 1
2
m(m+ 1).



K. Answer: (2)←→ (1, 1) and (4, 2, 2)←→ (3, 3, 1, 1).

Proof. The smallest n for which there exist 2 partitions of n is 2, namely:

(2), (1, 1),

and we see: (2)←→ (1, 1). This is our first example 2-cycle.

For n = 3 to 6 we see from the complete transition diagrams, either given as an example
(in the case n = 3), or derived in B., C., D. (in the cases n = 4, 5, 6) that there are
no 2-cycles.

In order to facilitate our search for 2-cycles, for n ⩾ 7, we look for some properties that
will narrow the search.
Suppose L has m piles, k of which are of size 1, and M has m′ piles, k′ of which are of
size 1. Then, by H.,

m′ = 1 +m− k

m = 1 +m′ − k′

= 1 + (1 +m− k)− k′

∴ k + k′ = 2.

Since k and k′ must be nonnegative integers either

k = k′ = 1 and m = m′

or, without loss of generality,

k = 2, k′ = 0 and m = m′ + 1.

For convenience, we will label these 2 configurations as follows (and refine them further
slightly).
Type 1: L and M both have a single pile of size 1, and the same number of piles.

For a successor to have 1 pile of size 1, (recalling n ⩾ 7) a layout must
have 1 pile of size 2.
Thus both L and M must have 1 pile of size 2. So

L =(L′, 2, 1)

M =(M ′, 2, 1)

where L′, M ′ are distinct layouts of n− 3 cards with no piles of size 1
or 2.

Type 2: L say has 2 piles of size 1, M has no piles of size 1, and L has one more
pile than M .
For M to be a successor of L with no piles of size 1, L can have no piles
of size 2.
On the other hand, for L to have 2 piles of size 1, M must have 2 piles
of size 2 (noting that the case M = (2) is excluded since n ⩾ 7.) So

L =(L′, 1, 1)

M =(M ′, 2, 2)

where L′, M ′ are layouts of n− 2 and n− 4 cards respectively, with no
piles of size 1 or 2.

For 2-cycles of Type 1 to exist for n = 7, there must be at least 2 layouts of n− 3 = 4
cards with no piles of size 1, and no piles of size 2, but looking at the list of layouts in
B. there is just the one: (4).
So there can be no 2-cycle of Type 1 for n = 7.

For 2-cycles of Type 2 to exist for n = 7, there must be a layout M ′ of n− 4 = 3 cards
with no piles of size 1, and no piles of size 2;



looking at the list of layouts in the example before B., there is just (3).
So we try M = (3, 2, 2), but

(3, 2, 2)→ (3, 2, 1, 1)→ (4, 2, 1) · · ·
That is, (3, 2, 2) is not part of a 2-cycle.
So there can be no 2-cycle of Type 2 for n = 7.

For 2-cycles of Type 1 to exist for n = 8, there must be at least 2 layouts of n− 3 = 5
cards with no piles of size 1, and no piles of size 2, but looking at the list of layouts in
C. there is just the one: (5).
So there can be no 2-cycle of Type 1 for n = 8.

For 2-cycles of Type 2 to exist for n = 8, there must be a layout M ′ of n− 4 = 4 cards
with no piles of size 1, and no piles of size 2;
looking at the list of layouts in B., there is just (4).
We try M = (4, 2, 2), and find

(4, 2, 2)←→ (3, 3, 1, 1),

our second example. □

Note. The 2-cycles found are the first two of an infinite family of 2-cycles:
For n = 2t2, there is the 2-cycle

(2t, 2t− 2, 2t− 2, . . . , 4, 4, 2, 2)←→ (2t− 1, 2t− 1, 2t− 3, 2t− 3, . . . , 3, 3, 1, 1).

The example 2-cycles above are those obtained with t = 1 and t = 2, respectively.


